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Definition of the Even-Mansour Cipher

Ko, ki, ...,k € {0, 1 }n
Ps, ..., P; public permutations of {0,1}"

ko K, K,
X‘é}—> P1 @ P2 Pt 4é3—>y

Figure: The iterated Even-Mansour cipher E.

defined in the random permutation model: the adversary has
oracle access to internal permutations P4, ..., P; (one can think
of P; as e.g. AES with a fixed publicly known key).



CCA-Indistinguishability
P4, ..., P;, Q are uniformly random permutations.
E is the iterated Even-Mansour scheme with uniformly random
keys ko, ..., k.

real world ideal world
P, . P; E P, e P; Q
attacker attacker

Figure: The indistinguishability game.



Previous results
"A Construction of a Cipher from a Single Pseudorandom
Permutation" Even and Mansour (J.C.) :
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"Key-Alternating Ciphers in a Provable Setting: Encryption
Using a Small Number of Public Permutations" of Bogdanov et
al. (EUROCRYPT 2012) :
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"Improved Security Bounds for Key-Alternating Ciphers via
Hellinger Distance" of Steinberger (eprint.iacr.org):
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Conjecture

Conjecture of Bogdanov et al. (EUROCRYPT 2012) :
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NCPA-Indistinguishability
The attacker first makes g queries to each P; and obtains
equations ‘ ‘
Pi(a) = b, Vi< q,j<t,
then he makes g non-adaptive queries to E or Q.

real world ideal world
E Q
X1, ) Xq X1, ) Xq
attacker attacker

Figure: The indistinguishability game.



Statistical distance

Let x and v be two distributions on €2, then the statistical
distance between p and v is:

=l = 3 S )~ v(0)]

XeQ



Advantage

Let Sy and S, be two systems, x = (x1,. .., Xg) be g queries
and ux and vy the distributions of the outputs of S; and S, on
inputs x then, the advantage to distinguish S; from S, satisfy:

AVE2 (q) = max ix — v



Application to Even-Mansour

Let x = (xy,...,Xq) be any g—tuple of queries and
uo: distribution of outputs in the ideal world (Q) with inputs x.
jiq- distribution of outputs in the real world (E) with inputs x.

We will upperbound || g — 10| independently of x to
upperbound the advantage of any NCPA-distinguisher.



Dividing the problem in g smaller
problems

Consider the distributions of:
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Dividing the problem in g smaller
problems

Consider the distributions of:
e Q(xy) with Q uniformly random, x; fixed.
e E(uq) with any E, uy uniformly random.
Same output distribution (uniform).



Another ideal world

Ps, ..., Pt are uniformly random permutations verifying
Pi@)=bj.Vi<qj<t.

E is the iterated Even-Mansour scheme with uniformly random
keys ko, ..., k.

Uy, ..., Ug are uniformly random.

real world ideal world
inputs to E : xy,...,Xq inputsto E : uy, ..., Uq
E E

Figure: The indistinguishability game.



Definition of world /¢
P4, ..., P; are uniformly random permutations verifying
Pa)=1bj,Vi<qj<t.
E is the iterated Even-Mansour scheme with uniformly random
keys Ko, ..., K.
Up41, --., Ug are uniformly random.

world /¢ world ¢ + 1
X17"'aXfaU€+1a"'7uq X1a"'7XK7XZ+17"'7uq
E E
distribution i, distribution i 1

Figure: The indistinguishability game.



Advantage

1o distribution of outputs in the ideal world.
e distribution of outputs in the world #.
juq- distribution of outputs in the real world.

g—1
AdVEFA(q) < e — pell
=0
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Definition of a Coupling

A coupling of . and v is a distribution A on © x € such that:

VX EQ D AXy) = pu(x)
yeQ
Yy e Q) Axy) = uy)

XeEN

In other words, A is a joint distribution whose marginal
distributions are resp. p and v.

The fundamental result of the coupling technique is the
following one:

If (X,Y)~ Athen

I —v| < PriX # Y]



Example of coupling




Example of coupling

p=0.5 p=0.6

Prove that, over 100 run, the second coin make more tails.



Example of coupling

p=05 p=0.6

Prove that, over 100 run, the second coin make more tails.
Boring solution: Compute the binomial law.



Example of coupling

p=05 p=06

Prove that, over 100 run, the second coin make more tails.
Boring solution: Compute the binomial law.
Elegant solution: Couple the coin’s distributions !!
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Example of coupling

Correlate the coin’s distribution:
e |f the first coin makes a tail, the second coin makes a tail.

e If the first coin makes a head, the second coin makes a tail
with probability 0.2.

It's clear that marginal distributions are respected and that the
second coin makes more tails.



Coupling py and fig4 1

Using the Coupling lemma, if A is a coupling of 1, and u, 4 and
(X,Y) ~ A, then:



Coupling py and fig4 1

Using the Coupling lemma, if A is a coupling of 1, and u, 4 and
(X,Y) ~ A, then:

laest — pell < PrIX # Y1,



world ¢

Xiyoooy Xoy Upgq, ...

&—— ko

P

&— ky

distribution i,

Coupling for one round

7Uq

world ¢ + 1

X150y Xey Xo1y - - -5 Ug

—

P

&— Ki

distribution 1.1

Figure: The indistinguishability game.



world ¢

Xiyoooy Xoy Upgq, ...

&—— ko

P

&— ky

distribution i,

Coupling for one round

7Uq

world ¢ + 1

X150y Xey Xo1y - - -5 Ug

&— Ko

P

&— kq

distribution 1.1

Figure: The indistinguishability game.
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Coupling of the first 7 inputs

Pi(x;i & ko) := P1(xi & ko)



Coupling of the first 7 inputs

Pi(x;i & ko) := P1(xi & ko)

implies a successful coupling for the i-th query.



Coupling of the ¢ + 1-th query

We want:



Coupling of the ¢ + 1-th query

We want:
P-?(Ug_H D ko) = P (Xg+1 D ko)



Coupling of the ¢ + 1-th query

We want:
P4(Ug+1 D ko) = P (Xg+1 D ko)

If both P;(uy11 @ ko) and P1(x4+1 @ ko) are not already defined
by an equation P;(&]) = b} or P}(&}) = b} then we set the
equation, the coupling is successful



Coupling of the ¢ + 1-th query

We can’t couple if:
o Ji< g, X1 ®k = a,or
e Ji<qQ,Up1 D k= aﬂ.



Coupling of the ¢ + 1-th query

We can’t couple if:
o Ji< g, X1 ®k = a,or
e 3i< g, U1 & ko = &,
The probability of not coupling is upperbounded by:
2q
N



Result for one round

We have

Advi™4(q) < = —



Result for t rounds

We use the same strategy, taking the same keys in both
systems and fixing P/’ = P; when computing the outputs of
X, ..., Xp.



Result for t rounds

We use the same strategy, taking the same keys in both
systems and fixing P/’ = P; when computing the outputs of
X, ..., Xp.
For the ¢ + 1-th query, we can’t couple if there are collisions at
every round. The probability of not coupling is upperbounded
by:

(29

Nt

because all keys are independent.



Result for t rounds

x (2g)!
Advi™(q) < x\2q). ,\(,t )



Two weak make one strong

Composing two NCPA-secure ciphers gives a CCA-secure
cipher.

Using
EMy; = EM; o EM;

we find that for 2f rounds, one has:

Advea(q) < 2,/ _ q

l\)‘t

4

NI~



CCA security for small number of

rounds
rounds | Conjectured | Best known bound Reference

1 1/2 1/2 (Even & Mansour)
2 2/3 2/3 (Bogdanov et al.)
3 3/4 3/4 (Steinberger)

t t/(t+1) 3/4 (St., this paper)
8 8/9 4/5 (this paper)

10 10/11 5/6 (this paper)
2t (2t)/(2t+1) 2t/(2t+2) (this paper)




CCA security for small number of

rounds
rounds | Conjectured | Best known bound Reference

1 1/2 1/2 (Even & Mansour)
2 2/3 2/3 (Bogdanov et al.)
3 3/4 3/4 (Steinberger)

t t/(t +1) 3/4 (St., thls paper)
8 8/9 4/5 (this paper)

10 10/11 5/6 (this paper)
2t (2t)/(2t+1) 2t/(2t+2) (this paper)

Open problem: Prove the bound N/(t+1) for adaptive
adversaries (understand what adaptivity really brings to the
adversary).
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